Mechanisms underlying increases in SR Ca2+-ATPase activity after exercise in rat skeletal muscle.
نویسندگان
چکیده
Prolonged exercise followed by a brief period of reduced activity has been shown to result in an overshoot in maximal sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity [maximal velocity (V(max))] in rat locomoter muscles (Ferrington DA, Reijneveld JC, Bär PR, and Bigelow DJ. Biochim Biophys Acta 1279: 203-213, 1996). To investigate the functional significance and underlying mechanisms for the increase in V(max), we analyzed Ca(2+)-ATPase activity and Ca(2+) uptake in SR vesicles from the fast rat gastrocnemius muscles after prolonged running (RUN) and after prolonged running plus 45 min of low-intensity activity (RUN+) or no activity (REC45) and compared them with controls (Con). Although no differences were observed between RUN and Con, both V(max) and Ca(2+) uptake were higher (P < 0.05) by 43 and 63%, respectively, in RUN+ and by 35 and 34%, respectively, in REC45. The increase in V(max) was accompanied by increases (P < 0.05) in the phosphorylated enzyme intermediate measured by [gamma-(32)P]ATP. No differences between groups for each condition were found for the fluorescent probes FITC and (N-cyclohexyl-N(1)-dimethylamino-alpha-naphthyl)carbodiimide, competitive inhibitors of the nucleotide-binding and Ca(2+)-binding sites on the enzyme, respectively. Similarly, no differences for the Ca(2+)-ATPase were observed between groups in nitrotyrosine and phosphoserine residues, a measure of nitrosylation and phosphorylation states, respectively. Western blots indicated no changes in relative isoform content of sarcoendoplasmic reticulum (SERCA)1 and SERCA2a. It is concluded that the increase in V(max) of the Ca(2+)-ATPase observed in recovery is not the result of changes in enzyme nitroslyation or phosphorylation, changes in ATP and Ca(2+)-binding affinity, or changes in protein content of the Ca(2+)-ATPase.
منابع مشابه
Mechanisms underlying increases in SR Ca -ATPase activity after exercise in rat skeletal muscle
Schertzer, J. D., H. J. Green, T. A. Duhamel, and A. R. Tupling. Mechanisms underlying increases in SR Ca2 ATPase activity after exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 284: E597–E610, 2003. First published October 29, 2002; 10.1152/ajpendo.00190.2002.—Prolonged exercise followed by a brief period of reduced activity has been shown to result in an overshoot in maximal sar...
متن کاملBeta2-agonist administration increases sarcoplasmic reticulum Ca2+-ATPase activity in aged rat skeletal muscle.
Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the beta2-adrenoceptor agonist (beta2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and u...
متن کاملIon transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.
After excitation of skeletal muscle, the disturbed ion homeostasis is restored by Na+, K+ ATPase of the sarcolemma and Ca2+ ATPase of the sarcoplasmic reticulum (SR). Contrary to Na+, K+ ATPase, the concentration and isoenzyme distribution of SR Ca2+ ATPase in human skeletal muscle depend on fibre type and age. In cultured human muscle cells the concentration and activity of Na+, K+ ATPase and ...
متن کاملCalcium binding protein changes of sarcoplasmic reticulum from rat denervated skeletal muscle.
Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twitch muscle. Ca2+-ATPase and calsequestrin conte...
متن کاملIschemia-induced structural change in SR Ca2+-ATPase is associated with reduced enzyme activity in rat muscle.
In this study, we employed an in vivo model of prolonged ischemia in rat skeletal muscle to investigate the hypothesis that structural modifications to the sarcoplasmic reticulum (SR) Ca2+-ATPase can explain the alterations in Ca2+-ATPase activity that occur with ischemia. To induce total ischemia, a tourniquet was placed around the upper hindlimb in 27 female Sprague-Dawley rats weighing 256 +...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 284 3 شماره
صفحات -
تاریخ انتشار 2003